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On the theory of the wind-driven ocean circulation 
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Pierce Hall, Harvard University 

(Received 14 June 1961) 

A surface distribution of stress is imposed on an ocean enclosed by two con- 
tinental boundaries ; the resulting transport circulation is studied between two 
latitudes of zero surface wind-stress curl, within which the curl reaches a single 
maximum. Under the assumption that turbulent transfer of relative vorticity 
has a minimum effect on the mean circulation, inviscid flow patterns are deduced 
in the limit of small transport Rossby number. Inertial currents, or naturally 
scaled regions of high relative vorticity, occur on both the eastern and the western 
continental coasts. Limits on the relative transports of the currents are obtained 
and found to depend on the direction of variation of the wind-stress curl with 
latitude, relative to that of the Coriolis accelerations. The most striking feature 
of the inviscid flow is a narrow inertial current the axis of which lies along the 
latitude of maximum wind-stress curl. All eastward flow occurs in this mid- 
latitude jet. 

A feature of the flow which cannot remain essentially free of turbulent processes 
is the integrated vorticity relationship, since the imposed wind-stress distribution 
acts as a net source of vorticity for the ocean. Heuristic arguments are used 
together with this integral constraint to deduce the presence and strength of 
the turbulent diffusion which must occur in the region of the mid-latitude jet. 
It is further inferred that the turbulent meanders of the jet must effect a net 
meridional transport of relative vorticity. 

- 

1. Introduction 
Considerable progress has been made in the last fourteen years towards an 

understanding of long-time average, large-scale ocean currents. If the sufficiently 
complex problem of the general ocean circulation be separated from the more 
fundamental problem of the circulation of the coupled atmosphere and ocean, 
the requirement of continuity of (turbulent) stress a t  the interface of the two 
fluids becomes the primary driving force acting upon the sea. That is, motions 
induced by surface wind-stress dominate those caused by the pressure gradient 
normal to the gravitational fieldoaused, in turn, by the differential heating due to 
solar radiation. These two driving mechanisms do, of course, interact in an 
inherently non-linear fashion, and any separation is, to some extent, arbitrary. 
However, if all motion vanishes at some depth a t  which the internal tangential 
stress is also negligible, the total local horizontal transport can be related un- 
ambiguously to the surface wind-stress curl over the major part of the oceans 
(Sverdrup 1947). Although the assumptions inherent in the above statement are 

4 Fluid Mech. 12 



50 G. F.  Carrier and A.  R. Robinson 

not strictly valid (Stommel 1958, chapter l l) ,  the extremely simplified problem 
which they pose for the transport fields contains features which must be inherent 
in any more realistic model. Since those aspects of the general circulations to be 
discussed in this paper can be presented most simply under the assumptions of 
vanishing motion and stress at some constant depth, this model will be adopted 
here and refinements directed towards a more realistic ocean model will be left 
for future discussion. 

Furthermore, since the quasi-geostrophic north-south transport directly 
forced by the wind-stress curl vanishes at certain latitudes, it  has become custo- 
mary to consider separately the circulation of a region bounded by two such lati- 
tudes and by two continents, e.g. the Pacific between 13" and 50" N. This point 
will be discussed explicitly below. In  such a region, the wind-stress curl is of 
one sign and reaches a maximum at approximately the middle latitude, e.g. 
the curl reaches a maximum at about 33" N. The simplest realistic model of surface 
wind stress acting in such a region may be taken to have a component only in 
the longitudinal direction, and the longitudinal component may be taken as a 
function of latitude alone. This model is developed below. 

The paper is presented in six sections, with some small amount of repetitive 
discussion, so that the more geophysically oriented sections, 2 and 3, and the 
more mathematically oriented sections, 4 and 5, may each be reasonably self- 
contained. It is clear, however, that the theory proferred depends critically on 
the arguments presented in all sections. For convenience the boundary -layer 
notation used differs somewhat in the two parts. 

2. The transport theory of the general circulation 

To treat the simplest ocean model of this type, we consider, on the ,&plane,? an 
ocean bounded by two latitudes at which the curl of the wind stress vanishes and 
by two rigid boundaries at constant longitude (meridional continents). Inte- 
grating the horizontal momentum equations and the equation of continuity 
between a constant level of no motion and an undistorted upper sea surface, we 
have 

2.1. Formulation 

1 

- H  P 
- J:Hq(z, y, 2 )  dz + s" (uu, + 2(uy +WU,) dz - 252f(y) v +- P, = 7(y), (2.1) 

Us+& = 0, (2.3) 

where subscripts indicate partial differentiation. 

A system of rotating Cartesian co-ordinates. The rotation vector is vertical and has 
a variable magnitude in the latitudinal direction, thus modelling the radial component of 
the earth's rotation. The horizontal component is neglected, as the resulting Coriolis 
accelerations are relatively Unimportant. To derive from spherical co-ordinates the 
P-plane approximation we employ, it must be assumed that the tangent of the latitude 
is a small quantity; thus the mean latitude of our ocean must be less than 45'. Ultimately, 
however, we regard the /I-plane as a model system. 
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The following nomenclature is employed: 
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co-ordinates in the longitudinal, latitudinal and vertical directions 
the corresponding velocity components 
the pressure 
the density 
the depth below the sea surface, z = 0, at which motion and tangential 
stress are assumed to vanish 
magnitude of the earth’s rotation 
non-dimensional Coriolis parameter, i.e. f(y) = fo +/?y/b, where 
fo = sin Bo, /3 = b cos Bo/R, and 0, is the mean latitude, b the latitudinal 
extent of the ocean basin, R the radius of the earth 

Fl(z, y ,  z ) ,  F2(q y, z ) :  components of horizontal frictional force per unit mass 
(lateral turbulent stresses) 

7(y): the longitudinal component of surface wind stress 
0 0 

U = / -Hudz ,  V = 
1 - H  

vdz,  P E pdz :  the horizontal transport components 

and integrated pressure function 

In the equations considered, p has been treated as a constant, an assumption 
compatible with the Boussinesq approximation. This, of course, is not the same 
as the assumption of barotropy. Note that, if the first two terms appearing on the 
left-hand sides of each of equations (2.1), (2.2) can be adequately represented in 
terms of the transport fields and their derivatives, a closed problem for the 
horizontal transports is formed by these three equations alone. Under such 
representation, these equations will form the basis of the present study, as they 
have for the previous studies which will first be discussed below. 

A useful relationship, the vorticity equation, is obtained upon elimination of 
the pressure between (2.1) and (2 .2 ) ,  

+ 2Q3 V / b  = -T’(Y).  (2.4) 

No term proportional to f ( y )  appears in the vorticity equation (2.4) because of 
the divergence relation (2.3). This results in the particularly significant dynamical 
role of the variation of effective Coriolis acceleration with latitude. For, where 
friction is negligible and the motion is slow enough for the neglect of non-linear 
terms, equation (2.4) becomes a balance between two terms only, viz. 

2npV/b = -7’(y). 

This is equivalent to assuming that, except for the component of internal stress 
necessary to transmit the surface driving force to the body of the fluid, the motion 
is geostrophic. 

2.2. Quasi-geostrophy 

That oceanic flow is essentially geostrophic is empirically well-known, and the 
frictionless, linear vorticity equation, together with mass continuity, represents 
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the original quasi-geostrophict model for the theoretical consideration of the 
transport fields developed by Sverdrup (1947). The divergence equation (2.3) 
may be used to define a transport stream function Y, in terms of which this 
model is represented mathematically by a single exceedingly simple equation. 
Let U =  -Y y, v = Yx. 

where k(y) is an arbitrary function of integration. Note that the latitudinal trans- 
port is completely specified by equation (2.6), and is unidirectional if 7’(y) is 
of one sign. On the other hand, the longitudinal transport is completely unspeci- 
fied without a consideration of boundary conditions, i.e. without the determina- 
tion of k(y). Recall that this occurs despite the fact that the surface wind stress 
is purely longitudinal. It is the cross-wind component of transport which is 
determined and only the cross-wind component. 

Since the directly forced latitudinal flow vanishes a t  latitudes of zero gradient 
of surface stress in virtue of equation (2.6), the region between two such latitudes 
may be considered separately from the rest of the world-ocean. This is assuming, 
of course, that no other mechanism induces a non-zero transport distribution 
along the bounding latitude circles. We shall proceed under this assumption as 
has been done by previous authors. Note, however, that care must be exercised 
when the results of such a model are applied to a discussion of the circulation of 
the real oceans. We return briefly to this point in $2.5 below. For simplicity we 
consider a rectangular ocean 0 6 2 6 a, 0 < y < b, subject to the wind-stress 
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n b  
7(y) = --cos--. 

Thus 7’(y) = (7&) sin (7rylb) (see figure 1) .  The value of the stream function on 
the bounding latitudes may be taken as zero. To complete the description of the 
circulation between them, it remains only to specify that the zero stream line 
also lies along the eastern and western continental boundaries. However, due to 
the appearance of only one integration function in the solution (equation (2.7)), 
this is impossible. The stream function may be made zero at only one longitude. 
The quasi-geostrophic model is thus degenerate, in the sense that it is incapable 
of describing the closed circulation of an isolated ocean. This degeneracy may be 
recognized alternatively by noting the net transport of mass obtained upon 
integrating V between x = 0 and x = a along any constant y $. 0 or b. Sverdrup 
(1947), considering the detailed structure of equatorial currents in the eastern 
Pacific (in terms of a more realistic wind-stress representation), determined k(y) 
by satisfying the boundary condition along the east-coast a t  x = a. This corre- 
sponds to a choice of k ( y )  = (ab/2QP) 7’(y), whence 

w x ,  Y) = (b/2Q/3) 7’(y) (a - x). (2.9) 

t The term quasi-geostrophic is used throughout this paper precisely as defined here, 
n.b. not as commonly used in meteorology. 
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Empirical motivation for this choice lies in the fact that at low latitudes strong 
currents form and flow along the western boundaries, e.g. the Kuroshio. It may 
be anticipated, therefore, that, at low latitudes, the region near the western 
coast is dynamically more complicated than that near the eastern coast. 

FIamE 1. (a) Sinusoidal form of a simple horizontal wind stress; (6) the corresponding 
latitudinal gradient (wind-stress curl) ; (c) the triangular approximation to .the curl as 
employed in $3. 

The quasi-geostrophic degeneracy must be removed by including at least some 
of the terms neglected in the vorticity equation (2.4), which, in its complete form, 
is certainly capable of describing a closed ocean circulation. The terms to be 
included will still remain small over most of the area of the ocean, but will become 
controlling in certain limited regions, e.g. boundary layers near coasts. Thus the 
simple balance given by equation (2.6) will still obtain almost everywhere. It is 
important to note, however, that since k(y) is determined only by a consideration 
of the singular regions, the processes of friction and/or inertia (which are directly 
important only in limited regions) have a gross effect on the flow everywhere. 
Only after the details of the singular regions have been considered is the east- 
west transport, U = b(2!&?)-l7”(y) x- k’(y), known in the quasi-geostrophic 
region. It is found that k(y) depends strongly on the assumptions made to relate 
the integrated frictional and inertial terms to the mean transport fields. 

2.3. The diffusion of relative vorticity 
The first models which yielded complete solutions for closed oceanic vortices 
were made under the assumption that the inertial terms (the non-linear coupling 
of the mean field with itself) remained negligible. The system was closed by the 
inclusion of horizontal turbulent friction (the non-linear coupling of the zero- 
average fluctuation fields). This was originally done most simply under the 
assumption of a frictional force proportional to the horizontal transport velocity 
(Stommel1948), and later developed under the assumption of a constant horizon- 
tal eddy coefficient (Munk 1950). The mathematical statements are, respectively, 

0 0 0 
F,dz=RU, F2dz=RV and F,dz = vV2U, F2dz = vV2V, 

1 - H  1 - H  
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where R and v are free parameters, adjusted, in each case, to give the best fit to 
observations. The equations governing the two models are 

RV2Y i- 2QPYx/b = -7'(y) 

vV4Y i- 2QpYx/b = - ~ ' ( y ) .  and 

Both equations are linear and tractable. For the trigonometric wind distribution 
given by (2.8), Y may be taken proportional to sin (nylb) and the equations 
separated.t If  R and v be assumed small, the resulting x-equations are simply 
soluble by the technique of singular perturbation theory (Munk & Carrier 1950). 
To apply this technique, the ocean is initially separated into three regions, an 
interior and a boundary-layer region near each coast, i.e. at x = 0, a. The appro- 
priate interior approximation is that of quasi-geostrophy, and the interior solu- 
tion is given again by (2.7). In  the boundary-layer regions the flow is approxi- 
mately free from the direct (local) wind stress, a balance being obtained in the 
vorticity equation primarily between frictional and variation-of-Coriolis- 
parameter terms. Formally joining the boundary-layer solutions to the interior, 
the solution is completed and k(y )  is unambiguously determined. It is deduced 
for both models that, in a formal first approximation, the contribution from the 
boundary layer along the eastern coast vanishes identically. Thus k(y) is deter- 
mined from the interior solution satisfying by itself the condition Y = 0 at x = a, 
and the quasi-geostrophic interior is again given by (2.9). The streamline pattern 
for the asymmetric vortex is sketched in figure 2b.  Mathematically the difference 
between the eastern and western coastal regions results from the fact that the 
boundary-layer equations consist of a balance between an even and an odd 
x-derivative. This results in a single sign change between the eastern and western 
regions when the equations are expressed in terms of local longitudinal variables 
positive in the direction of outward normals from the coasts (the boundary-layer 
variables). 

In  terms of the frictional models, a complete theoretical description of a 
general ocean circulation was for the first time achieved. Although not at all satis- 
factorily treating the turbulent process involved, the constant-eddy-viscosity 
model was considered the more plausible one, and was developed in some detail, 
including a realistic treatment of wind-stress distributions and ocean-basin 
shapes. As in the simple model discussed above, the interior solution satisfies 
alone the eastern boundary condition. An important consequence is that at each 
latitude the transport of the western boundary current is completely specified 
independently of the eddy viscosity, and is given by $(O,y) of equation (2.9). 
The width of the western boundary current does, however, depend on the eddy 
viscosity, and is appropriately measured by the length (va/2a)#.  The eddy vis- 
cosity is then determined by making this length scale agree with observation. 

The frictional ocean model described above does yield a westward oriented 
asymmetrical vortex as the response to a simple wind stress, but as an acceptable 

t The higher order of the differential equation for the model with constant eddy 
viscosity implies that additional boundary conditions have to be specified. These are 
taken aa W / a x  = 0, x = 0, a; anY/ay2 = 0, 9 = 0, b ;  i.e. rigid, and tangential-stress-free 
surfaces respectively. The separation of Y is seen to remain valid. 



T h  wind-driven ocean circulation 55 



56 G. F. Carrier and A.  R. Robinson 

theory of the general circulation in the real oceans it is open to several criticisms. 
First, the eddy viscosity required to give the observed width of the Gulf Stream 
to  the theoretical boundary current is significantly greater than the value of the 
eddy viscosity indicated in the Gulf Stream region by independent means. 
Secondly, the theoretically deduced transports of the western boundary currents 
are much smaller than observed transports, smaller by a factor of 0.5 for the Gulf 
Stream and 0.6 for the Kuroshio (Munk 1950, table 2). Thirdly, the predicted 
streamline pattern is in qualitative disagreement with observations. This may 
be seen from figure 2, which compares the theory applied to the North Pacific 
Ocean with the observed transport field. Since the only strong current predicted 
on the frictional theory flows northward along the entire length of the western 
boundary, the observed Kuroshio may be accounted for below about 35". 
The theory cannot, however, explain the Kuroshio leaving the coast at this latitude 
and, holding together, flowing eastward out to sea; nor does it account for the 
California or the Alaska currents. It has been speculated that the Kuroshio 
leaves the western coast because of an instability of the simple flow given by the 
frictional theory. The circulation which includes the Alaska current has been 
considered to be an independent vortex, which appears in the apex of the tri- 
angular ocean of figure 2 b. It may be seen that the theoretical gyre begins at too 
high a latitude, is too small, and has only a western boundary current. 

2.4. The advection of relative vorticity 

The above discrepancies preclude the possibility of a purely frictional theory 
of the general ocean circulation. This possibility is precluded even if one is seeking 
only an approximate explanation of the grossest features of the motions which 
occur in nature. This means that the boundary-layer control of the general ocean 
circulation cannot be dominated by the frictional diffusion of vorticity. It must, 
therefore, be dominated by the non-linear process of vorticity advection. Initial 
work on the development of such an inertial theory (Charney 1955; Morgan 1956) 
seems to have been motivated only by the discrepancy between the theoretically 
required eddy-viscosity and the observational upper bound,t under the stimula- 
tion of the results of a very simple inertial model (the conservation of potential 
vorticity in a current independent of latitude, see Stommel 1958, p. 109) which 
provided a suggestively accurate description of a western boundary current. An 
immediate advantage of a thoery in which the inertial terms completely dominate 
the frictional ones is that no free parameter, characterizing the turbulence, is 
present. It is possible to subject the theory to stringent comparison with 
nature. 

Due to the non-linearity of the inertial terms, it is not possible to develop 
in a straightforward manner a theory for the transport fields alone. We shall 

t If  one accepts lo6 cmZ/sec obtained from Pillsbury's measurements in the Florida 
Straits (Stommel 1955) as characteristic of the maximum turbulence present in the boun- 
dary-current region, then the 10s cm2/sec required by the frictional theory is larger than 
that which is available. If, on the other hand, one is willing to accept a narrower stream 
from the theory and uses lo6 cm2/sec, the inertial terms are of comparable magnitude to 
the viscous terms. The frictional theory as developed is thus not self-consistent, and it 
becomes reasonable to explore next the restriction Y < 106. 
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proceed to do so, however, by evaluating the integrated inertial terms by means 
of an assumption; thus we replace equation (2.4) by 

H-’[-(UU,+ vU,),+(UK+ v $ ) , ] + 2 ~ / 3 V / b + k T f ( y )  = 0. (2.10) 

In other words, we replace the actual problem of interest, that of a three-dimen- 
sional flow driven by a surface force, by an analogous problem of a two-dimen- 
sional flow driven by a body force. The approximate evaluation of the advective 
integrals inherent in the analogy is, of course, valid only when the vertical velocity 
and the vertical variation of the horizontal velocity are negligible. These con- 
ditions certainly are not fulfilled over the major part of the ocean in the presence 
of the wind-driven surface Ekman layer and the corresponding convergence or 
divergence. But over the major part of the ocean, the inertial terms will be any- 
how negligible, becoming important only in intense and narrow currents. These 
streams of high relative vorticity are not driven primarily by the local winds 
(divergence of the local Ekman layer), but by a horizontal flux of mass into the 
region of the intense current. This horizontal mass flux has originated from the 
effect of the winds blowing over the whole ocean basin. Furthermore, the down- 
stream component of flow in the narrow current remains approximately geo- 
strophic. Under these conditions, equation (2.10) provides an appropriate 
approximation everywhere for the upper layer of a two-layer theory. Although 
it is necessary in a proper two-layer theory to allow for a variation in depth of 
the upper layer, i.e. to let H = H ( x ,  y), we shall treat only the case of constant H .  
In  terms of the understanding of the relationship between the quasi-geostrophic 
regions and the streams of high relative vorticity provided by this simple example, 
a more sophisticated model may be evolved. 

In  the previous theories mentioned above, the depth of the upper layer was 
treated as variable. The studies were not, however, concerned with a complete 
inertial theory in the sense of the determination of k(y) and the associated quasi- 
geostrophic flow by a simultaneous consideration of boundary-layer and interior 
regions. They were concerned rather with the investigation of particular features 
of inertial boundary currents with a given interior flow. Furthermore, considera- 
tion was given only to the flow in the equatorial half of an ocean basin, the region 
below the maximum of the wind-stress curl. It will be seen below that results so 
obtained are not in general valid over the entire basin. 

Both studies were influenced by the fact that in previous ocean models the 
interior stream function satisfied by itself the eastern coast boundary condition. 
Charney assumes that the interior solution should in fact be given by the 
Sverdrup-Munk transport function, but noting that the transport prescribed 
into the Gulf Stream region is too low on this theory, replaces it by the observed 
transport function at the Gulf Stream edge. With this empirical interior Charney 
computed by numerical integration the structure of a boundary current in a two- 
layer inertial model which allowed for variation in depth of the upper layer. He 
found good agreement with the observed structure of the Gulf Stream. The good 
agreement obtained by a proper local theory provides some justification for our 
cruder treatment of the inertial terms when we consider the complete problem. 

Morgan considered a greater range of particular types of inertial boundary 



58 G. F. Carrier and A .  R.  Robinson 

layers. None were as directly applicable to a real oceanic situation as was Char- 
ney’s study, but were coupled with theoretically deduced interior solutions. To 
simplify the non-linear analysis, the wind-stress curl was approximated by a 
linear function away from the lowest latitude. For a constant layer-depth 
Morgan considered two choices of interior solution, the Sverdrup-Munk solution 
satisfying the eastern coast boundary condition, k(y) = (ab/2Qp) r’(y), and a 
solution which satisfied the western coast boundary condition, k(y) = 0. For 
the first case the flow could be closed by an inertial boundary current, for the 
second it could not. Then, retaining the satisfaction of the eastern condition by 
the interior function, the effects of density stratification in terms of a variable 
layer-depth were investigated. The existence and width of the boundary current 
were not markedly altered by the variable depth. The transport of the western 
boundary current is, of course, independent of whether or not H is varied when 
the interior function is assumed to satisfy the east coast conditions. Under this 
assumption, the interior function is the same as that deduced on the frictional 
theory, and the transport discrepancy is assumed in Morgan’s model. 

Before proceeding to develop an inertial theory in which the interior and boun- 
dary-layer solutions are treated in full generality, we shall first explore more fully 
the case of linear wind-stress curl as posed by Morgan. The analysis will remain 
quite straightforward and the results will exemplify the features of greatest 
interest of the complete inertial theory. A more general interior solution (which 
contains Morgan’s two solutions as special cases) will be used. Morgan’s solution for 
an equatorial half-basin will be shown to be the end-point of a class of possible 
solutions and it will be shown that Morgan’s choice corresponds to that of mini- 
mum transport in the western boundary current. Considering similarly the 
poleward half of an ocean basin, significantly different constraints on the class 
of interior solutions allowed will be obtained. Combining these results to infer 
the flow over a complete ocean basin, the most striking feature is the existence of 
a strong and narrow eastward flowing current at the latitude of maximum wind- 
stress curl. 

The determination of k(y) is, although in a highly non-linear fashion, related to 
the solutions of equation (2.10) when the forcing inhomogeneity, r’(y), vanishes 
identically. Such free inertial flow has been considered by Fofonoff (1954). 
Although we shall not make direct use of the free solutions in our following 
development, in the free solutions geostrophic regions of high relative vorticity 
are related to one another in a general way which is characteristic of the forced 
problem. A discussion of the free problem is presented in the next section. 

2.5.  Free inertial flow 
We consider here solutions of equation (2.9) for the case of r’(y) = 0. Introducing 
the stream function as defined by (2.5), the terms may be arranged in the form 

Yx(V2Y + 2Qhf (y))* - Yv(V2Y + 2Qhf(y)), = 0. 

V2Y + 2Qhf = G(Y). 

(2.11) 

Simple integration gives the first integral in the form 

(2.12) 
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As was done by Fofonoff, we shall investigate only the class of free solutions for 
which (2.12) becomes linear, i.e. we investigate the case of 

ww = 90 + sly, (2.13) 

where go and gl are numerical constants (a velocity and an inverse squared length 
respectively, recalling that Y is a transport stream function). We seek conditions 
under which the free solution will contain a geostrophic region and regions of 
high relative vorticity, i.e. inertial currents, retaining the conditions that Y 
vanish on all sides of a bounding rectangle. 

Let the stream-function be non-dimensionalized by its maximum value Yo, 
which is of course indeterminate for a free solution. We introduce also non- 
dimensional longitude and latitude variables; by substitution of (2.13), (2.12) 
becomes a:Yl(A2& + ApJ - Y l 4  -Yo + 7 = 0, (2.14) 

where y.p = Yo#, 2 = a t ,  y = by ,  

and yo = ~fo-9oh-')/P, Y1 = glyo/2Qph, a = gJb2, A = a/b. 
The conditions under which a geostrophic region and singular regions of narrow 
inertial currents can exist may now be extracted. For succinctness we shall 
exclude extreme geometry, i.e. we assume the length to width ratio of the ocean 
basin, A, to be of order unity. Then a geostrophic region will exist if 1011 < 1, the 
approximate solution to (2.14) being given by 

A7 = (7 - YO)/Yl. (2.15) 

Note that the geostrophic stream function is zero only on y = yo, so that at  least 
three inertial boundary layers are required to yield a complete free solution. The 
non-dimensional width of the inertial boundary layers will be O(a:*), irrespective 
of whether the layers are near bounding latitudes or longitude. The condition 
that the resulting approximate equation describe a boundary-layer phenomenon, 
i.e. a narrow current, is that its solution contains a decaying real exponential. 
This condition is seen to be a: > 0. A solution with a natural length scale O( )a)*) 
but for which 01 < 0 is indeed possible; it  would have the form of a rapidly oscil- 
lating inertial wave existing over the entire ocean basin. Such solutions are 
certainly of interest but will not be discussed further here. 

In  summary, note that both conditions obtained are in the nature of restric- 
tions upon a, and may be expressed as 

0 < 01 = g1b-2 < 1. (2.16) 

Thus the existence of a geostrophic region which can be closed by inertial 
boundary layers, and the characterization of these boundary layers, depends 
only upon the integration function G(Y). In  particular, there is no fundamental 
dependence upon p, the variation of the Coriolis parameter with latitude. This 
fact is not clearly stated by Fofonoff. What does depend on p, however, is the 
nature of the geostrophic interior. 

From (2.15) the geostrophic velocities are expressed as 

U, = -2Q/3h/g,, V,  = 0. (2.17) 

Thus, if /3 = 0, the motion is confined entirely to the boundary layers. If /3 + 0, 
from (2.17) and (2.16), the geostrophic region consists of a uniform westward 
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flow. Thus, as found by Fofonoff, all eastward flow must occur in a narrow current 
of high relative vorticity. We restate these results in more general terms which 
will be useful for a comparison with the problem of the forced flow as follows: 
Considering only the geostrophic region, the north-south flow is completely 
determined ( V = 0) ,  but not the east-west flow ( U  - gF1). If we insist that inertial 
boundary layers exist which will close the geostrophic flow, the (direction of 
the) east-west flow is determined (gl > 0). The geostrophic flow can only be 
westward. 

A simple flow pattern obtained by Fofonoff is shown in figure 3. Note the 
symmetrical appearance of northward and southward flowing western and 
eastern coast boundary currents, as well as the necessary asymmetry of the east- 

FIUURE 3. A free inertial flow pattern. Note the symmetrical character of the north- 
south flow in the boundary layers along the eastern and western coasts. (From Fofonoff 
1954.) 

ward flowing boundary current. This eastward jet has been placed on the nor- 
thern boundary, i.e. the choice of yo = 0 has been made. This is, of course, com- 
pletely arbitrary; there is no uniqueness associated with a free solution. The 
eastward flow could occur on the southern boundary or in a free inertial jet at  
any intermediary latitude. 

A useful application of the free solutions discussed here lies in the case of fluid 
motion which is driven by a distribution of sources and sinks imposed along its 
boundaries. Some special cases have been studied; in particular if a point source 
is placed at = 1, 7 = 1 and a point sink of equal strength at 6 = 1, 7 = 0, the 
resulting circulation may have a boundary current along the eastern coast 
which is stronger than the boundary current along the western coast. The rele- 
vance of these remarks to the general ocean circulation lies in the fact that ocean 
basins do communicate with one another across latitudes of zero wind-stress 
curl, and such communication can be modelled by a source-sink distribution. 
This problem will be developed elsewhere, for systems driven simultaneously 
by wind-stress and source-sink distributions. The results are particularly relevant 
for southern-hemisphere oceans, e.g. they may account for the otherwise ambigu- 
ously large transport of the Benguela Current. 
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3. A completely inertial model 

We proceed to discuss the type of forced flow allowed in an ocean basin driven by 
a wind-stress curl which has a maximum at some mid-latitude. The flow is as- 
sumed to have a quasi-geostrophic region and to be closed by inertial boundary 
layers; thus the stream-function will everywhere satisfy equation (2.10). Intro- 
ducing non-dimensional variables and parameters, (2.10) takes the form 

(3.1) 

3.1. Development for a simple wind system 

EC@&@& + W v J q  - &(@g + h2$'l/,)61 + $6 + s(7) = 0, 

where @ = (2Cl/3/T0a)Y, g = ( ~ / T ~ ) T ' ,  6 = 70[ah(2Q/3)2]-1, 

and 6,  7, h have been defined following equation (2.14). The transport Rossby 
number, e, appears as the singular perturbation parameter. For the typical 
values T~ = 1 cm2sec-l, a = 109cm, h = 105cm, 2Q = 1.4 x 10-4sec-1, /3 = 0.7, 
we have e = O(10-6). 

The interior solution to (3.1) is obtained formally by assuming that @ is a 
smooth function of (6,  7)  and thereby neglecting the e-terms. We write this as 

(3.2) $1 (6,  7) = g(7) [ - 6 + W l ,  
where g ( 7 )  l(7) is the non-dimensional form of k ( y )  as discussed in $ 1. The form 
(3.2) shows clearly that @I may be zero upon one curve, 6 = E(7), in the longi- 
tude-latitude plane, and is also convenient because we shall continue to assume 
that $([, 0 )  = $ (6,  1) = 0 because g(0) = g( 1) = 0. In  general, however, since 
$I may not be made zero at 6 = 0, 1, we must allow for boundary layers near 
both the eastern and western coasts (signified by subscripts E and W respec- 
tively). Introducing the boundary-layer variables Q = 6-4 t, CTv = e-J( 1 - g), 
and recognizing that the amplitudes of $z and @w cannot depend upon e since 
they must join to @I as given by (3.2), the boundary-layer equation is 

(3.3) 

for either E or W subscript. Equation (3.3) is correct to O(e*), the relative vor- 
ticity is approximated by YZz and the characteristic longitudinal length scale 
is d a  or tens of kilometres. 

Since the boundary-layer stream functions are locally free, equation (3.3) 
may be integrated in the manner of $2.6, equations (2.11), (2.12), to yield 

&@ggo - @v @ g g  + $g = 0, 

&g+7 = H ( 9 9  (3.4) 

In  this case, however, the function H($)  must be determined by joining to the 
interior solution at the boundary-layer edge in each case. The problem is compli- 
cated by the fact that the interior solution is itself not known because of the 
arbitrary function Z(7) appearing in (3.2). In  the case of non-uniqueness, which 
we anticipate, the joining of the boundary layers to the interior provides relation- 
ships between the functions HE, Hw and 1 which serve to restrict the interior and 
boundary layers allowed. To proceed simply at  this point we consider only the 
class of interior stream functions that will be zero at  some constant longitude, 
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which may in general lie inside, outside or on a boundary of the ocean basin, 

where P is a numerical constant. 
The flow patterns allowed by the coupling of inertial boundary layers with 

quasi-geostrophic regions will be found to be of two distinct types. These types 
are distinguished by whether the driving force r'(y) varies with latitude in the 
same or opposite manner as the Coriolis parameterf(y), i.e. depending upon the 
sign of r"(y)/p. We consider here the two simplest possibilities, by letting 7'(y) 
vary linearly with latitude in each case. For a single ocean basin, the two cases 
occur below and above the latitude of maximum wind-stress curl. Expanding 
~ ' ( y ) ,  as given by equation (2.8),  about the southern and northern bounding 
latitudes, we obtain the relations: 

near y = 0, 
7'(y) = 70 -sin- TY + 707T b2y = 70 b ~ q  = b g  7o i- (q), 

b b  
and near y = b, 

( 3 . 6 ~ )  

(3 .6b)  

(see figure 1 c). The superscripts ? have been introduced to distinguish between 
the regions where the driving force has the same or the opposite sign as p. The 
allowed flow patterns will now be discussed in terms of the four functions H&, 
and the two interior constants P* . 

Case I :  an equatorward half-basin 

At the edge of each boundary layer, the relative vorticity becomes negligible. 
Setting $c.cs = 0 in (3 .4)  and using (3 .2 )  evaluated in terms of (3 .6a) ,  we have at 
the western and eastern coasts 

7 = Ht;[$l(O, 1111 = ~ & ; ( n 7 P + ) ,  (3.7a)  

(3.7b) 

whence H&($W) = (1/TP+) $v, H & ( $ E )  = [l/W+- 1)1$E. ( 3 . h  b )  

7 = ~;[$W,q)l = HjHv(P+-1)1, 

I f  we insert the functions (3 .8a,  b) into their respective boundary-layer equations 
obtained from (3.4), we obtain the equations 

$[g-(l/~P+)$+q = 0, $C5-[1/77(f'+-1)]$+7 = 0, (3 .9a ,b)  

where the subscripts E ,  W have been omitted on$-, cof (3 .9a,  b)  respectively. The 
condition that equations (3 .9a,  b)  be of boundary-layer form, i.e. contain a real 
decaying exponential rather than only oscillatory homogeneous solutions is that 
the term in $ alone be of opposite sign to the second derivative term. Thus, 
from (3 .9a) ,  P+ > 0, and from (3 .9b) ,  P+ - 1 > 0, will ensure that inertial boun- 
dary layers exist. It is seen that the eastern-coast condition is the strongest and 
contains the western-coast condition. 
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Case I I :  a poleward half-basin 

We now use (3 .63)  and proceed as above. Thus 

'I = H,[$F(O, 711 = H w [ n ( l -  7) P-I, 

'I = H5[?&(1,7)1 = Hdn(1--?1)(P--1)1,  

(3.10 a)  

(3.10b) 
whence 

HG($w) = - ( l / n P - ) $ W + l ,  H E ( $ E )  = - [ l / ~ ( P - - - l ) ] @ E + l ,  (3 .11a ,b )  

and $ ' 5 ' 5 + ( 1 / ~ P - ) q + + ~ - l  = 0, $ c c + [ 1 / n ( P - - l ) ] $ + 7 - l  = 0, 
(3.12a, b )  

again omitting the subscripts W, E respectively from the last two equations. 
For boundary-layer form, the restrictions are P- < 0, P - -  1 < 0. Thus in this 
case the western-coast con&tion is seen to be strongest and to contain the eastern- 
coast condition, in opposition to the result for case I. 

Under the stated restrictions, equationa (3 .9a,  b )  and (3.12a, b)  have simple 
exponential solutions with $ = 0 a t  5 = 0;  they join smoothly to the interior 
function as 5 -+ 00, e.g. 

$A = ny(P+ - 1) [ l  - exp { - [n(P+ - 1 ) ] 4  cE}]. (3.13) 

Therefore the most general interior solutions of the form (3 .5)  are 

$$ = ?sy(-[+P+) ( P f  > 1 ) ;  $y = 77(1--7)(-5+P-) (P- < 0). 
(3.14a, b )  

Correspondingly, the east-west component of quasi-geostrophic transport may 

$$ = -n(-(+P+) (P+ > l ) ,  ( 3 . 1 5 ~ )  
be obtained as a U 2 = - -  

a7 

= n(-E+P-) (P- < 0). Uy = --$- a 
a7 

(3 .15b)  

The values of U as obtained from (3.15 a) and (3.15 b )  are seen to be everywhere 
negative, as the ocean basin is contained in 0 < ( < 1 .  Thus the requirement that 
inertial boundary layers exist to close the quasi-geostrophic flow has served to 
determine the direction of the east-west flow in the quasi-geostrophic region. The 
flow must always be to the west (compare the discussion of $2.5,  following 
equation (2 .17)) .  The wind system giving rise to the ~'(9) which we have con- 
sidered is westward in the equatorward half-basin and eastward in the poleward 
half-basin. Thus in one case the longitudinal component of oceanic transport is 
in the direction of the wind and in the other case it is opposite to the direction of 
the wind. This is due to the interaction of the directly forced flow with the iner- 
tial boundary currents. We reiterate that a longitudinal wind determines only 
the latitudinal oceanic transport quasi-geostrophically. 

The above results have a profound implication for the qualitative structure of 
allowed flow patterns over an entire ocean basin, in which there can be no net 
flow to the west. As will be demonstrated in $4, curvature in the wind-stress curl 
will not allow an eastward flow. There must, therefore, be a breakdown of quasi- 
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geostrophic dynamics at the latitude of the maximum of ~ ‘ ( 3 )  (where ~ “ ( y )  changes 
sign relative to p). The eastward flow must occur in a region of high relative 
vorticity, i.e. in a free inertial jet. Thus the fact that the Gulf Stream and Kuro- 
shio leave the coast and flow eastward out to sea is simply explained by a com- 
plete inertial theory. An intense current a t  the latitude of maximum wind-stress 
curl is a required feature of all allowed flow patterns. 

The simple results obtained here contain additional implications for the num- 
ber and the transport of the inertial currents along the eastern and western 
coasts. I n  the equatorward half-basin there must be at  least a western boundary 
current; the interior solution can satisfy the east-coast condition (P+ = 1)) but 
not the west-coast condition. In  the poleward half-basin there must be at least an 
eastern boundary current; the interior solution can satisfy the west-coast con- 
dition (P- = 0)) but not the east-coast condition. In  general, however, there 
will be both eastern and western boundary currents in both half basins. The 
direction of flow must be to the north and in the equatorward western current 
and the poleward-eastern current, and to the south in the equatorward-eastern 
and the poleward-western currents. 

A final physical interpretation of the allowed P* values lies in the transports 
T$ of the boundary currents. These may be determined entirely from the in- 
terior solution (3.14a) b) since $ is zero on all coasts; hence we obtain 

Therefore, in the equatorward half-basin, the western current must always have 
greater transport than the eastern current, and in the poleward half-basin the 
eastern current must always have greater transport than the western current. 
What happens is that in each half-basin the boundary current which must always 
be present transports the amount of fluid directly forced by the wind, as well as 
sharing in a recirculation phenomenon involving also the mid-latitude current, 
the other boundary current, and a broad flow across the major part of the ocean. 
It should be noted that the transport discrepancy for the Gulf Stream and Kuro- 
shio which one obtains using the frictional theory discussed in $2.3 is not con- 
tained in the inertial theory. The Sverdrup-Munk transport function corresponds 
to the case P+ = 1. As this is the minimum allowed value of P+ it yields the 
minimum allowed value of T&, which may be arbitrarily larger. 

The lack of uniqueness inherent in this discussion is a real feature of a complete 
steady-state inertial theory. The ambiguity will, however, be partially removed 
by the inclusion of additional physics when the effects of friction are considered. 
It will be shown that an eastern boundary current in the equatorward half-basin 
is required and correspondingly that the minimum allowed value for T& is 
greater than the Sverdrup-Munk transport. 

In  figure 4, a sketch is presented of the simplest stream-line pattern allowed 
by the inertial theory, for P+ = 1, P- = 0. Note that (for a northern-hemisphere 
ocean) the mid-latitude jet is fed from the north and discharges to the south. 
Note, however, that there is no transport across the zero stream-line which forms 
the axis of the jet, i.e. on a completely inertial model, the half-basins do not 
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communicate. The striking difference between this pattern and Sverdrup-Mu& 
transport streamlines may be seen from figure 2 b. Since, in general, boundary 
currents will be present also on the north-western and south-eastern coasts, a 
schematic comparison with figure 2a shows that the Kuroshio, the Kuroshio 
extension or North Pacific current, the California current, the Alaska current and 
the Oyashio may be simply explained on the inertial theory. 

1 I I I I 

I I I I 
0.8 

O'* 5 o 6  
0.2 

FIGURE 4. Transport streamlines in the (t, 7) square ocean as given by the inertial theory. 
The double gyre with a mid-latitude inertial jet is the simplest response to the trigo- 
nometric wind-stress curl of figure 1 b. 

3.2. The mid-latitude jet 
Since the broad flow over the open ocean transports mass only to the west, 
the transport to the east must occur in a region of high relative vorticity. This 
inertial current must occur at about the latitude of maximum wind-stress curl, 
and will be 'free' in the sense that no physical boundary or local boundary con- 
dition is directly forcing the singular region to occur there. I n  the sense that there 
must occur an influx and efflux of mass along the sides of the jet, it  will not be free. 
To explore the dynamics and scale of such a jet we shall assume in this section 
that the direction of the strong current is purely longitudinal, i.e. that large 
gradients occur only in the latitudinal direction. 

An unusual feature of the dynamics of this current system is that the variation 
of the Coriolis parameter is of primary importance, even though the phenomenon 
occurs within a latitude belt less than 100 km in width. This is because the im- 
portance of the /?-effect is not measured directly by the percentage variation off 
over the latitudinal extent of the current, but is measured rather by the contribu- 
tion to the overall vorticity balance made by the planetary vorticity tendency, 
,WZ, in the region. Over the major part of the ocean, both north and south of 
the narrow current, the advection of relative vorticity is completely negligible 
with respect to the planetary vorticity tendency. The width of the current is a 
natural scale whereby the advection becomes comparable. This is similar in 

5 Fluid Mech. 12 
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principle to the vorticity balance in a coastal inertial current, but differs in that 
in a coastal current BYz becomes larger than in the open ocean, while in the mid- 
latitude current it does not. Correspondingly, the relative vorticity (as a point 
function of latitude and longitude) is larger in a coastal jet, but since the mid- 
latitude jet is broader, the total vorticity transport by both types of currents will 
be the same order of magnitude (with respect to dependence upon the Rossby 
number, e ) .  

To present a formal description, we introduce a scaled latitudinal variable, 
and obtain the approximate form of equation (3.1), which becomes 

h2($[&XX - $5 $[Jxx) + $[ + S(T0) = 0, (3.17) 

where X = e-&(y -qo) ,  and the superscript J refers to the region of the mid- 
latitude jet. The amplitude of $ must again be independent of B in order to join 
to the solutions on either side of the jet. The equation is correct to O(&). The 
dependence upon h can, of course, be removed by a scaling transformation to a 
latitudinal variable h-*X. 

It is of some interest to demonstrate that equation (3.17) may be reduced to 
an ordinary differential equation by means of a similarity transformation. Since 
such a transformation depends upon the interior function of the transverse 
variable at the boundary-layer edge, and since this function must differ on the 
poleward and equatorward sides of the jet, it  is necessary to introduce separate 
variables to measure distance away from the central zero-streamline in each 
direction. We illustrate by the equatorward directed similarity transformation. 
Using an interior solution $$ of the form (3.5) and the notation 

g(T0) = go, 8 = X[A2(E-P+)13, $J = (E-P+) [F(s)  -go], (3.18) 

(3.17) transforms to 
goP” - F”F + QF’F” +  SF' + F = 0, (3.19) 

where a prime denotes total differentiation with respect to s. The boundary 
conditions are F(co) = 0 and continuity of solution at s = 0. It may be shown 
from a consideration of the asymptotic form of (3.19) that an exponentially 
decaying solution does exist, but this will be omitted here since a more complete 
mathematical treatment of the inertial flow is to be presented in Q 4 (see equation 
(4.16)). The relevance of the similarity transformation to the general argument is 
that the asymptotic approach to the interior solution will be along lines of con- 
stant s rather than constant X. From (3.18) and an analogous poleward-directed 
transformation it may be seen how the mid-latitude jet will broaden to the east as 
it loses mass on the equatorward side, and how it will narrow to the east on the 
poleward side as it gains mass. This structure has been incorporated into the 
sketch presented in figure 4. 

3.3. The integrated vorticity constraint and the necessity for 
diffmive transfer 

We have up to  this point discussed features of the general ocean circulation for 
which the model described by equation (3.1) is appropriate, i.e. the nature of the 
flow in the quasi-geostrophic region covering the major oceanic areas and the 
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position and relative strength of the intense streams of high relative vorticity 
necessary to complete the flow field. There are, however, features of the circula- 
tion which cannot be deduced by such a simple model. For example, the values 
of P*, or the amount of recirculation in each half-basin, are not determinate. 
Furthermore, the velocity distribution of the inertial solution discussed contains 
features which cannot occur in any real fluid; in each inertial boundary current, 
the velocity tangential to the coast reaches a maximum a t  the coast, and in the 
mid-latitude jet there is a discontinuity of tangential velocity across the zero- 
streamline. Any viscosity, no matter how small, must certainly smooth these 
discontinuities. I f  the (turbulent) viscosity is so small that this is the only role 
it plays in the general circulation, then viscous phenomena are essentially un- 
interesting from the large-scale point of view. We shall see, however, that this is 
not the case, by considering the constraint imposed upon the fluid motion by 
integrating the vorticity equation over the entire area of the ocean basin. 

To perform the integration we note that the inertial terms may be rewritten, 
with the notation 

as &A@?) - $k)A$c = a(@All.,)/aE- a(@Wc)lar; (3.20) 

we then multiply (3.1) by d t d y  and integrate over the range (0 , l )  in both vari- 
ables to give 

1 1 

EJ01dr[llr(A&)71c=b - . J o 1 d E [ W t ) I J  +Jo1dP&=L+J1 0 0  J l d E d l i s h )  = 0 

(3.21) 

or, since @ = 0 on all boundaries, all terms vanish but the last, and (3.21) reduces 

to Jold$g(q) = 0. But this is clearly impossible as g(7 )  is positive definite, the 

wind-stress curl being everywhere of one sign over the ocean basin. Thus a 
completely inertial model violates the integrated vorticity constraint. The 
integration (3.21) is an explicit statement, in terms of the specific inertial model 
adopted here, of general objections which have been raised against complete 
inertial models on the grounds that integral conservation laws must be violated. 
It should be noted that (3.21) is an integral vorticity statement, and not an 
integral angular momentum statement, which need not be violated inertially 
(Morgan 1956, $2). 

The fact that the inertial model cannot satisfy the integrated constraint does 
not, of course, mean that the model is inadequate to describe those aspects of 
the flow to which it is applicable. Equation (3.1) must be regarded as an approxi- 
mate form of the more complete equation (2.4). It provides for a local balance 
between a distributed source of vorticity (the integrated wind-stress curl) and 
the divergence of an advective flux of absolute vorticity, V V  + f. However, the 
distributed vorticity source is everywhere of one sign and correspondingly there 
is a net input of vorticity into the fluid by the wind-stress. The vorticity advection, 
although balancing the source locally, can only redistribute vorticity internally, 
it cannot absorb vorticity. The only possible sink of vorticity is a diffusion into 

5-2 
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the boundaries.? The diffusive transfer process must, therefore, be included if 
the integrated balance is to be considered. 

The inertial theory must therefore be regarded only as the inviscid core of a 
velocity field which also contains thin frictional layers, and when thus com- 
pleted, will contain no physical paradoxes. In  the limit of very small (horizontal) 
friction, which appears empirically to be the correct limit for the general ocean 
circulation, the flow field outside the frictional regions is determined essentially 
independently of friction. Mathematically, there is a three-scale problem, and 
the narrowest boundary-layer contribution (frictional scale) can fit on to what- 
ever is required by the mutually-determined solutions from the two broader 
scales (quasi-geostrophic or geometric and inertial). Physically, however, the 
effects of friction on the general circulation is of great interest, since the ocean is a 
turbulent system which generates its own ‘friction’ and in which there is present 
only the minimum amount of turbulent diffusion necessary to satisfy overall 
conservation laws. In  a sense the mean flow has control over the turbulence, 
rather than the turbulence controlling the mean flow. This is true in the region of 
the mid-latitude jet. In  the region of the coasts the nature of the diffusive bound- 
ary layer is such that it contributes to the overall vorticity balance in a manner 
independent of the amount of friction present. To illustrate these ideas, we shall 
at this point introduce a process of diffusion by means of a constant coefficient 
of kinematic eddy viscosity, v. We shall allow the eddy viscosity to have different 
constant values in the different regions where diffusion contributes to the local 
vorticity balance. In  no sense do we imply that this approaches an accurate 
description of the turbulence. It does, however, provide a semi-quantitative 
description of the relation of diffusive transport to the other mechanisms of 
vorticity transfer which are present. 

Thus we add to the vorticity equation a term - vA4\T, or in non-dimensional 
form, we replace equation (3 .1 )  by 

-YAA*+s(*~h*~-*~A*~)+*~+sfr) = 0, (3 .22)  

where y = vb/2Qpa3 is obviouslyrelated to a transport Ekman or Taylor number. 
We may immediately obtain relationships between y and s for the inertial 
currents discussed in $4 3.1 and 3.2 to be a valid approximation to the flow, i.e. 
obtain bounds on the eddy viscosity in coastal and mid-latitude regions. Near a 
coast, a/aC = O(s-*), and in the free jet, a/av = O(s-*). The sizes of the largest 
diffusive terms relative to the important advective terms are ye-* and ye-% 
respectively. Thus, 

in a meridional inertial current: 

y < €4 or v < (70ahh-1)-~b-1(2Qp)-2,  ( 3 . 2 3 ~ )  

in a latitudinal inertial current: 

y < &A-2 or v < ( 7 0 h - 1 ) 4 ~ ~ ~ b - 3 ( 2 ~ p ) - % .  (3 .23b)  

t We shall consider below only the possibility of diffusion into lateral boundaries, 
although it is conceivable that some vorticity may be Mused into the ocean bottom via 
barotropic eddies. 
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The simplest way to illustrate the nature of coastal frictional regions is to 
regard them from the point of view of boundary layers on the inertial current. 
Consequently, we introduce the inertial-layer variable, or &, and add the 
diffusive term to equation (3.3), retaining only the term a4/at4 in A. Thus 

- Q+gcc f $c $'5cq - $7 &cc + +c = 07 (3.24) 

where l? = YE-* measures the effect of friction, and may be seen to be simply an 
inverse Reynolds number based on the eddy viscosity, the transport velocity at 
the quasi-geostrophic edge of the inertial layer, and the width of the inertial 
layer as a length scale. For large Reynolds number, frictional effects will be 
confined near the boundary f; = 0 and we introduce a scaled variable p = Pf; for 
this region.? The amplitude of the stream function must also be scaled in l?; 
let @ = Px(,u, q), where 31 is a smooth function. The additional requirement is 
that the amplitude of the velocity parallel to the coast be the same in the frictional 
layer, where it is to be brought down to zero, as it is in the inertial layer, i.e. 
$f; = rS*w must remain independent of l?, or s = - r .  We then find that 

,LL = r-g& x = r+$, (3.25) 

and the approximate equation becomes 

- X P P P P  4- X P  X P P t  - X11 XPPP = 07 (3.26) 

the equation for an ordinary non-rotating fluid boundary layer in which viscosity 
and inertia are balanced. This is seen to occur when the velocity normal to the 
coast, which is O( 1) in the quasi-geostrophic interior, is O(l?*). 

For the integrated vorticity balance, we must replace (3.21) by the integral of 
(3.22) over the ocean basin. To evaluate the term AA$ we note that the con- 
tribution will be negligible except in coastal frictional boundary layers where 
the full term may be replaced approximately by $6ttt. Thus the balance 

(3.27) 

obtains. We note first that (3.26) is entirely independent of the eddy viscosity. 
This occurs because at the boundaries, from (3.25), we have that $ - v*, slag N v-*. 
Since y - v, the combination y@ttt does not contain v. As the eddy viscosity 
becomes smaller, the gradients sharpen in the viscous layer in such a manner as 
always to maintain the integrated vorticity constraint. Furthermore, we can 
obtain the value of $.5Et on the coa&s, explicitly in terms of the quasi-geostrophic 
interior solutions, by integrating once the full boundary-layer equation (3.24). 
The integral may be performed simply by rewriting the inertial terms as 

lc's &-cq - $q $ere = $'5q - $7 @.,,)lac. 
Since on the coasts in the presence of friction $c = @7 = 0, and interior to the 
inertial currents the relative vorticity is negligible, these terms yield nothing 
when integrated across the frictional and inertial boundarylayers, from the coast 
to the quasi-geostrophic interior. From (3.5), (3.24) and (3.25), 

YJkfS(O7  7) = -dr)P7 Y@& 7) = - d r )  ( P -  1 ) 7  (3.28% b )  

and in virtue of the restrictions P+ > 1, P- < 0, i t  is seen from (3.27) that the 
equatorward-western and poleward-eastern boundaries diffuse into the ocean 

See note added in proof stage at end of paper (p. 80).  
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vorticity of opposite sign to that of the distributed wind source, while the equator- 
ward-eastern and poleward-western boundaries diffuse vorticity of the same sign 
as the wind. 

Equations (3 .28a ,  b )  provide expressions for the diffusive contributions to 
(3 .27)  valid everywhere on the western and eastern coasts except for a narrow 
latitude belt of width €4 situated about the centre of the mid-latitude jet, or a t  the 
latitude of maximum wind-stress curl. If the contributions from these short 
stretches of the coasts be neglected, which seems a priori reasonable, (3 .27)  may 
be evaluated. Under the assumption of a wind-stress curl which is symmetric 
about the middle latitude 7 = 3, e.g. (2 .8 ) ,  the vorticity integral (3 .27)  becomes 

*( - P+ - P- + (Pf  - 1) + (P- - 1)) + 1 = 0, (3.29) simply 

which is seen to be automatically satisfied for any amounts of recirculation in the 
two half-basins. There is, however, another point of view which is physically 
more plausible than that adopted here for the evaluation of (3 .27) ,  and which 
yields a minimum lower bound on P+ which is higher than that obtained from 
inertial considerations alone. The detailed argument will be reserved for $ 4  
and only an outline presented here. The physical basis is the diffusion of vorticity 
in the region of the mid-latitude jet. 

As has been mentioned above, diffusion must certainly act to eliminate the 
tangential velocity discontinuity at the mid-latitude zero-streamlines. That 
diffusion do no more than this a t  mid-latitudes is the basis for the inequality 
(3 .233) ,  under which a very narrow frictional region will be sandwiched between 
two inertial streams. That this cannot be the case can be seen by considering 
integrated vorticity constraints for partial areas of the ocean basin, e.g. in the 
lower half-basin, over the three frictional sub-layers (lying along E = 0, 1, 
7 = 4) on the one hand and over the quasi-geostrophic pulse inertial current 
regions on the other hand. Each such region will be found to be separately out of 
balance, the vorticity diffused out of the ocean a t  the boundaries not having been 
allowed to diffuse out of the body of the fluid into which it was put by the distribu- 
ted source.? It is plausible to assume that this occurs in the region of the mid- 
latitude jet, since boundary currents are known to be essentially inertial. If this 
be the case, the inequality (3 .21b)  must at least become an equality; hence 
u = lo7 cm2/sec (evaluated for numbers typical of the North Atlantic). Thus the 
theory of the mean flow yields a crude but quantitative prediction of the amount 
of turbulence which must be present. A simple dimensional argument from the 
largest-scale meanders of the Gulf Stream after i t  leaves the coast at Cape 
Hatteras gives v = lo8 cm2/sec as a crude empirical estimate of the eddy viscosity 
in this region. 

Furthermore, under the assumption that diffusion does occur in the region of 
the mid-latitude current in a wide enough region to destroy the purely inertial 
character of the jet, it is highly unlikely that only a minimum of vorticity will 
be diffused. Consider therefore the possibility that the vorticity advected into 

t From a formal point of view we may say that every streamline of the flow must go 
through a frictional region, since inertial currents conserve (potential) vorticity along 
streamlines. 
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the narrow core of the jet from the western walls has essentially all diffused and 
broadened the jet as it reaches the eastern wall. Assuming the separation of the 
eastern coastal currents into inertial and frictional regions to be maintained, it 
may be inferred that there can be no net diffusion of vorticity into the ocean 
along the eastern coast. In  such a case the vorticity diffusion along the short 
stretch of eastern coast around the mid-latitude is not negligible; in fact, it  
cancels the contribution (3.28). As will be argued in $4, from the nature of 
better understood but similar stagnation points of fluid, flow, it is possible for 
this to occur while the corresponding contribution from the western coast does 
remain negligible. In  this extreme case, we replace (3.29) by a relationship 
containing no eastern coast contribution, 

, (-P+-P-)+l= 1 0, or P+ = 2-P- ,  (3.30) 

and, since P- 6 0, the minimum value of P+ = 2. In  this case the transport of the 
equatorward-western current (Gulf Stream or Kuroshio) is twice that given by 
the purely frictional theory, and all the vorticity input by the wind is balanced 
by diffusion in this region. In  a less extreme case, the vorticity balance in the 
eastern coastal currents could be partially maintained by a breakdown of the 
strict separation into purely inertial and frictional streams. The transports of the 
Gulf Stream and Kuroshio would then be more than, but less than twice, that 
given by the Sverdrup-Munk value. Furthermore, this would yield eastern cur- 
rents which are broader and less well defined than western currents, which is 
apparently the case observationally. This view may be supported by the fact 
that the eastern currents have a downstream mass efflux, and would tend to be 
more unstable than their western counterparts. 

An interesting consequence of this discussion is that in each half-basin a 
balance does not obtain between wind-stress curl and coastal diffusion of vor- 
ticity. A balance is maintained only by a meridional transport of vorticity by the 
meanders or eddies in the mid-latitude jet. If it can be shown that these mean- 
ders do indeed effect a transfer of vorticity between low and high latitudes, then 
they play, in the general circulation of the ocean, the same vital role that large 
scale meanders in the jet stream are known to play in the general circulation of 
the atmosphere. 

In  the following sections we shall develop the inertial flows with additional 
generality and then present further arguments as to the implication of turbulent 
diffusion. 

4. The inertial boundary-layer theory 

distribution, the model described in $2.  
We return now to discuss, for a more general geometry and wind-stress 

The differential equation (3.1) for the transport stream function 9 is 

& ( W + ’ f ) q  - &(EAlCr + f )s+Q(T)  = 0, (4.1) 

wheref(7) is a redefined non-dimensional form of the latitudinally varying verti- 
cal component of the earth’s rotation. The boundaries lie a t  5 = &(r), 5 = E2(7), 
7 = 0 and 7 = L. The former of these are continental barriers on which I$ must 
vanish and the latter are those latitudes at which g(y), the curl of the wind stress, 
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vanishes. We shall see that 9 may also be taken to vanish at these latitudes. The 
number L determines the length scaling (the quantity b of equation (3.1) times 
L is the distance from 7 = 0 to 7 = L), and we use the same scale in the longi- 
tudinal direction so that a = b and h = 1 (a, b, h are quantities introduced with 
equation (3.1)). 

FIGURE 5. Geometry of ocean basin and wind-stress curl g(q) .  

Both because of the mathematical structure of the problem [i.e. because the 
most highly differentiated terms in (4.1) have a very small coefficient (Carrier 
1953)] and because of the foregoing discussion, we anticipate that the circulation 
pattern will display a boundary-layer structure and that $ can be written in the 
form 

where Cj = [E  - 5(7)]  s-4. In  choosing this representation for $, we deliberately 
do not allow sufficient generality because we wish to deduce the necessity of a more 
highly subdivided structure. We shall find, in fact, that the interior domain must 
be divided into two regions (as in $3)  and that inertial currents (boundary 
layers) will occupy not only the eastern and western boundaries, but that an 
intense current will also flow at constant latitude across the ocean basin at 
7 = a, the latitude of maximum wind-stress curl. 

Since $(I) and $(2) describe boundary layers, they must die out exponentially as 
-+ 00, c2 + - 00, respectively. 
We substitute (4.2) into (4.1) and segregate into three groups the various con- 

tributions which emerge, to give 

$(5> 7) = F0’(E, 7) + $(l’(CI> 7) + P2’(C2, 71, (4.2) 

[9pY(7) +s(7) + O(&l 

-+s-%q!)$kk1?) - $yV%k,,,, Pl(7) - 9%%7) lC.‘:lkl,* + $k)Y(r) + O(&l 
+ E-*[($E)$tk*l] - $pf%;&) q2(7) - $*2 $,,,& + P p m )  + O(&l = 0. (0) (2) (4.3) 

The first bracket contains all terms which are not exponentially small far from 
the lateral boundaries; the second contains those terms which are not small near 
the western boundary; the third contains the terms which determine the struc- 
ture of the eastern boundary layer; the quantities qj and $sj appearing in (4.3) 
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are 1 + [5(7)12 and the directional derivative of PO) along the boundary ,$ = &(q), 
respectively. Equation (4.1) and this discussion imply that 

where a(7) has yet to be determined.i 
The second bracket of (4.3) must also vanish and so 

($t)@EklV - lq”$-&k1Sl)  91(7) - $%?) $-F!CISl + #!.m = 0. (4.6) 

The treatment of this equation is simplified by writing 

(l) - P [ p ,  71, @C15, - 
whereupon (4.6) becomes 

(4.7) 

where 

and (thus far) Gl(u) is any differentiable function of u. However, if $(l), the solu- 
tion of (4.7), is to die out as el -+ co, P(0,r )  must be zero. Thus 

Gl[Xl(7)1 = Wl(7). (4.10) 

If we define $(xl) to be the inverse of xl(y), then 

G1(u) = W1[7;T(u)l. (4.11) 

I n  order to see simply the implications of (4.11) which are vital to the deter- 
mination of the current structure, it is convenient to consider a simple but 
realistic example. Let L = 7c, &(7) = 0, c2(7) = const. = &, g(7) = sin7,f = fo + 7. 
This g(7 )  is a reasonable qualitative approximation to the observed wind-stress 
curl over the major ocean basins, and the slowly varying trigometric form of the 
correct f(7) is approximated by 7, as is customary on a /3-plane model. With 
these definitions, 

and we arbitrarily take u(7) to be the constant A ,  > 0; we defer until later a more 
comprehensive discussion of this choice. Thus Gl(u) = sin-l (u/A,), so that 

JY$(l), 7 )  = - 7 + sin-l{A<l[Pl)K1,7) + PO)(% O)l), (4.12) 

and $Ekl = -7  + sin-l{Ail[P1) (C137) + P0)(7,0)I). (4.13) 

Equation (4.13) can be integrated explicitly by quadratures. In  particular, 
multiplication by $Cl and integration over el yields 

Wl(7) = 7, Xl(7) = $y(o ,7)  = A1 sin 7, 

[$E)(C, 7)12 - [$E)(O, 7)12 + 27[$(‘Kl:,, 7) - $‘”(O, 7)l 
= 2A[usin-lu+(1-~2)~-1], 

where u = sin7 +Ai’$(l)(c, 7). 
t Note that the choice of $(O) in this form, with a(7) bounded in 0 < 7 < 1, implies 

that $(O)( f ; ,  0) = @O)‘ (E ,  L)  = 0. Thus 7 = 0 and 7 = L are streamlines of flow. We limit 
ourselves, in this investigation, to such $[O) but we note in doing so t,hat. no other choice of 
@O) permits the elimination of any of the inertial currents which are obtained in the 
following. 
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Since 

F1)(co, q) = 0 and F1)(O, q )  = - F0)(O, q) ,  [ $ t ) ( O ,  q)I2 = 2A,( 1 -COB 7). 
Thus, a t  q = &r, the velocity at  the continental barrier is proportional to Af. 

Using (4.13), when q < in and we define sin-l(O) = 0,  $(&.,(O, q )  < 0, and, 
as {, + co, $ti, + 0. However, when q > in, sin-l {Acl[$(l)+ FO)]} begins 
with the value zero a t  {, = 0 and tends to n-q as $(l) + 0, thus making it 
impossible for $ELl to vanish. In  other words, equation (4.13) has no solution 
which approaches zero as {,+co. Thus the inertial boundary layer on the 
western side of the ocean can continue poleward only up to the latitude where g(q)  
has its maximum value. For more general f (q), g(q), cl(q), the greatest poleward 
penetration of the western current cannot exceed q = a, the latitude at which 
[A(q )  - <,(q)] g(q)/f’(q) has its maximum value. 

The equations which govern the behaviour of the eastern current are identical 
with those for $(l) except that the index 2 replaces the index 1. The solution $(2) 

of that equation will die out as + - co provided a(?) - f 2 ( q )  > 0;  $(2) can be 
found by integrating (4.13). 

Once again, by identical arguments, the current (which flows towards the 
equator) can be continued only as far poleward as that latitude where 
[a(q) - f2 (7) ]  g(q)/f’(q) has its maximum. Mass conservation in the large can now 
be included in the theory only if a current flows eastward from the poleward 
terminus of the western current to that of the eastern current. This current can 
be sought as still another boundary layer using the description 

where cr = E-)[T -a].  
With this modification of $, equation (4.3) will be modified by the addition of 

another bracket, which must vanish independently of the other brackets of that 
equation. Thus 

$6 (3) $r,,, (3) - $:)$:;E + $f)(f,  a)  $:& +f’(a> = 0. (4.14) 

This equation admits a similarity solution of the form 

$(” = {a(.) - c} h[a{a(a)  - 5}4] = [a(a) - 61 h(7). 
Substitution of this representation of $(3) into (4.14) yields the equation 

(1 + h)  h” - ih’h“ + h - +7h’ + O ( d )  = 0. 

$ = $(O)  + ?p + $(2) + $(3’(5, a),  

(4.15) 

The relevant solution of this equation is one whose asymptotic behaviour for 
large negative 7 (as governed by the linear terms of (4.15)) is 

h, N Cr-%exp (278/3,/3), (4.16) 

and for which h,(O) = g(a)/f’(a). The details of h, can be found by numerical 
integration but, once again, such details provide no particular advantage. 

The description of the flow for q < a which is provided by $o + $l + $2 + $3 is 
unsatisfactory only in the poleward corners where the boundary layers join. 
The efflux of vorticity from the western current defined by $(l)(C,, a)  differs 
markedly from that entering the horizontal current described by $(3)(0, (r) and 
a similar situation prevails near the point [c2(a), a].  The former is of order unity 
and the latter of order E*. Before resolving this difficulty by invoking frictional 
considerations, we must discuss the flow above q = a. 
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The analysis proceeds precisely as before; we denote the stream function by 
$ instead of 3 and use #O), $(l), qY2), $(3), respectively, t o  describe the interior flow 
and the western, eastern and central inertial currents. The independent variables 
[,, C2, CT are defined precisely as before; in fact, 

where 

(4.17) 

(4.18) 

(4.19) 

and that G(u) is definedin terms of 7** the inverse of $?!(7) by the relation 

G(u) = W [ ~ * * ( U ) ] .  (4.20) 

For the special case treated before, W(7) = 7 and G(u) = sin-l (u/R,), where we 
now take a*(r) = B, in the description of $@), and we must now define sin-l(O) = n. 
However, with these definitions of W and G, the number Bl must be negative if 
the solution of (4.17) for 7 > Qrr is to die out as Cl --f co. In  the general case, instead 
of B, < 0, we have a*(?) - (,(r) < 0, in 7 2 a. The eastern boundary current in 
7 > a can be treated in precisely the same way and the only new requirement, 
u*(q)--&(q) < 0, is already implied by (4.18). Similarly, the boundary layer 
just above 7 = a provides no new criteria. 

At this stage, then, we find a family of flow descriptions which has discrepancies 
in vorticity transport in the corners near {(,(a), a], and near {&(a), a]. The lack 
of uniqueness is contained in the function a(7) [which is restricted only in that 
a(7) 2 c2(r) for 7 < a] and the function a*(q) [which must only obey the inequality 

This lack of uniqueness cannot be removed in a purely inertial theory and we 
a*(r) < El(7) for r > a]. 

must invoke further considerations to partially resolve the difficulties. 

5. The effects of turbulent diffusion 
It was noted in tj 3.3 that the integral of the left side of equation (4.1) over the 

domain cannot be zero. g ( 7 )  is a positive function over that domain and the other 
terms provide a vanishing contribution. It is not surprising, then, that there 
should be discrepancies in the vorticity transport. One can attempt to resolve 
this difficulty in either of two ways. The first of these is to  replace (4.1) by an 
equation in which the frictional effects are modelled in some specific way and then 
solve that equation. If the friction were introduced by a pseudo-laminar model 
with an eddy viscosity appropriate to  the turbulent state of the fluid, equation 
(4.1) would be replaced by 

(5.1) Y A W  + $&A$ +f), - 3&&+ +f)c + d r )  = 0, 
where y has been defined following equation (3.20). This equation could be solved 
for very small y, an appropriate choice since our present knowledge of turbulent 
transport in the, oceans indicates that y < 8 in the continental boundary regions. 
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In  doing so, we would regard the results of the inertial theory of Q 4 as the descrip- 
tion of the interior flow of a new boundary-layer problem, in which the viscous 
terms then provide the mechanism for additional boundary layers along the 
continental barriers. These frictional boundary layers are much thinner than the 
inertial layers they adjoin. The detailed solution is of little interest since this 
friction model is of questionable validity; fortunately, it  is also unnecessary. Once 
we are convinced of the existence of a frictional boundary layer of thickness 
6 < e* along, say, the western boundary below 1 = a, we can evaluate its con- 

FIGURE 6. Western velocity distribution and friction-layer geometry. 

tribution to the gross vorticity balance as follows. Figure 6 shows, schematically, 
the friction layer and a stream line, A‘B‘, lying entirely outside the friction layer, 
but near the landward edge of the inertial current. 

The convection of vorticity across AA’ is negligible in view of the very small 
velocity $7 in this region; the diffusion of vorticity across OA and across A’B’ are 
negligible because each of these streamlines does not lie in the friction layer. 
Thus, the diffusion of vorticity across OB must be equal to the efflux of vorticity 
across BB‘. The latter quantity, E ,  is given by 

E = 1; z)zI,dz = i ( V 2 ( B ’ )  - v2(B)} = 4v2(B’). (5.2) 

We conclude that the vorticity contributed by diffusion across the barrier via 
the friction layer OB is equal to one-half the square of the inertial-theory velocity 
evaluated at the wall. This, as we showed in $4, is proportional to A,. We see, 
by similar calculations, that the (counter-clockwise) vorticity diffused across the 
upper western boundary is B,. 

The following arguments indicate that negligible vorticity is diffused across 
the eastern boundary. Note that although the vorticity flux in the horizontal 
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current may lie in a very slender ribbon of fluid at the western end, any such con- 
centration of vorticity will diffuse broadly as the current proceeds towards the 
eastern boundary. Thus, a very small part of this vorticity will enter the eastern 
friction layers. Furthermore, little vorticity emerges from the eastern friction 
layers since the inertial current velocity at q = 0 and at 7 = L is zero. Since this is 
a decelerating flow, these friction layers must be less well defined (more diffuse) 
than those on the western boundary. The vorticity balance corresponding to that 
illustrated in figure 6 for the western boundary is shown in figure 7. Since little 
vorticity crosses D'C'CD, no important vorticity contributions can diffuse 
across D'E'ED. 

D E 

FIGURE 7. Eastern friction layer and geometry. 

It follows (once the dimensional parameters have been included properly) that 

L 

where I' is the domain defined following equation (4.1). Since A ,  >/ 0, B, < 0, 
the weakest possible circulation is that for which B, = 0 and 

r 

A,= gd?d[. J (5.4) 

The degree of difficulty associated with the detailed integration of the foregoing 
equations depend markedly on the detailed description off(?), g ( T ) ,  a(?), a*(?), 
etc. However, the conclusions are rather insensitive to such detail. I f  g(a) is 
unity and if A,  = a(a),  B, = a*(a), the foregoing conclusions still hold. This 
theory, therefore, gives a lower bound on the circulation which is significantly 
greater than (by a factor of 2) and in much better agreement with the observa- 
tionst than is the prediction of previously discussed models. 

That is, the observed transports as reported by Munk (1950, table 2). Since the trans- 
ports are deduced from observed profiles of density under the assumption of a level of no 
meridional motion, care must be exercised in their interpretation. It is hoped to be able 
to remove partially this ambiguity by returning to the data with less restrictive assump- 
tions (Stommel, private communication; see Stommel 1958, p. 164). 
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6. Discussion 
The general consequences of the model can now be described. We consider any 

wind stress distribution? whose curl has a single maximum at latitude 7 = a and 
vanishes a t  the two latitudes 7 = 0 and 7 = L > a. The basin geometry is that of 
figure 4. When we postulate that no flow crosses the latitude 7 = 0, L, in reason- 
able conformity with Northern hemisphere observations,$ the flow over most of 
the basin [excluding the neighbourhood of 6 = El(r), 5 = &(7), 7 = a] is given 
by equations (4.5) and (4.17). These descriptions are not unique and cannot be made 
so without detailed solution of a dissipative model. However, the constraints 
imposed by gross dissipative considerations are already very informative. 

The intensive flow near 6 = &(7) and f = &(q) can be expected to be of 
boundary-layer type, but these boundary layers cannot be continued from 
7 < a into 7 > a. It follows from the disjoint character of the layer along gl 
(for example) that another intensive current must move eastward from the point 
[&(a), a]. Note that these inertial boundary currents provide constraints on the 
general flow described by (4.5) and (4.17), which have the form a(7) > &(q) in 
7 < a,a*(q) < &(7) in 7 > a. The gross vorticity balance further restricts the 
choice of a(7) and a*(p) by demanding that 

a@) +a*@) = SS(7) d7dE. 

Since n* 6 &(7), the smallest value for a(a) is given by 

This provides a lower bound for a(a)  which supersedes the foregoing constraints 

Using, now, any a(7) and a*(7) which obey the foregoing constraints, we find 
in the region 7 < a that V ,  the net vorticity input from g(7) and from solid boun- 
daries, is not zero but negative and that the input in the region 

The current along 7 = a must therefore accomplish two things. It must trans- 
fer from the upper half-basin into the lower half-basin all of the vorticity which 
diffused into the stream along f = El(7), 7 > a and that which waa put in by the 
wind-stress curl, g(7). It must also change the distribution of vorticity among 
streamlines in such a way that fluid enters the interior region of the lower basin 
with a vorticity commensurate with yVo). To do this, the width of the zone 
affected by friction (turbulent transfer) must be as wide as the inertial current. 

t Despite tlhe introduction of our model aa an effort to understand primarily the circula- 
tion structure in the 15' to 55" N. latitude range, it is equally appropriate to the lower 
latitudes where similar but nerrower latitude bands exist with wind-stress curl variations 
from zero to a maximum to zero. In  these latitude bands, the complex subsurface current 
structure seems to be consistent with this analysis and the p-plane approximation 
(f 2: f+&) is a very good one indeed. (We are, of course, not referring to the Cromwell 
current.) 

$: The geometry is much more complicated in the Southern hemisphere and will be dis- 
cussed elsewhere. 

2 Ez(a)* 

> a is - V .  
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As a dominant process, we suggest the instability associated with the fact that 
the fluid enters the mid-latitude jet with velocities which are of order e-4, 
instead of the c-4 appropriate to such a stream;i the entering vorticity is corre- 
spondingly high. The deceleration process is certain to be violent and the transfer 
occurs. It is clear, however, that this argument a5 i t  stands is not adequate to 
provide a mechanistic description of the transfer process or a quantitative pre- 
diction of a(a). 

The foregoing combination of an inviscid boundary-layer theory and a heuristic 
dissipation model gives a self-consistent description of ocean-basin flows which 
are in rather good agreement with Northern hemisphere observations and at  
least suggestive for the Southern hemisphere. In  particular, the quantity a(a),  
which defines the transport, is required by this theory to be twice as large as that 
of previous theories. The minimum values acceptable within this theory are close 
to those of the real oceans. 

I n  brief, then, we deduce the presence of the mid-latitude jet and an estimate of 
the circulation; we infer the gross character and location of the turbulent vor- 
ticity by merely noting the role of the diffusive processes which are required in 
order that they together with the clearly deduced flow form a coherent and self- 
consistent physical picture. 

It is a pleasure to acknowledge the stimulation afforded by Professor Henry 
Stommel’s continued interest. Thanks are due to the Office of Naval Research 
(GFC) and to the Research Corporation (ARR) for their support during the period 
of this research. 
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Note added in  proof 

As was pointed out to the authors by Derek Moore, the reader could infer, 
in $3.3 and in $4, that one can construct by conventional laminar boundary- 
layer analysis a description of a frictional modification of the inertial flow 
pattern derived earlier. This is certainly correct in so far as the western 
boundary regions are concerned, but it is not true for the eastern boundaries. 
The decelerating character of the inviscid flow near the eastern boundaries 
implies that such conventional boundary layers cannot be constructed. This 
is disturbing only because one cannot state with assured accuracy the dis- 
tance to which boundary-generated vorticity will migrate. It is unlikely that 
the general flow pattern will be modified appreciably by this difficulty, and 
especially unlikely that the circulation-estimating inequality (which is con- 
trolled by western boundary considerations) will be affected. In  other words, 
a constant eddy coefficient as introduced is inappropriate for a discussion of 
the structure of the flow field, although it is useful for some order of magni- 
tude estimates. 


